

Journal of Pure and Applied Algebra 133 (1998) 141-142

JOURNAL OF PURE AND APPLIED ALGEBRA

Right-left symmetry of $aR \oplus bR = (a+b)R$ in regular rings

S.K. Jain^{a,*,1}, K. Manjunatha Prasad^{b,2}

^aDepartment of Mathematics, Ohio University, Athens, OH 45701, USA ^bStat-Math Unit, Indian Statistical Institute, 7, SJS Sansanwal Marg, New Delhi 110016, India

Abstract

A somewhat surprising and unexpected result in the theory of von Neumann regular rings is proved. © 1998 Elsevier Science B.V. All rights reserved.

AMS Classification: 16E50

Theorem 1. Let R be a ring and let $a, b \in R$ such that a + b is a von Neumann regular element. Then the following are equivalent:

- (i) $aR \oplus bR = (a+b)R$.
- (ii) $Ra \oplus Rb = R(a+b)$.
- (iii) $aR \cap bR = (0)$ and $Ra \cap Rb = (0)$.

Proof. (i) \Rightarrow (ii). By hypothesis (a+b)h(a+b) = (a+b), for some $h \in R$. Since $a, b \in (a+b)R$, we have that a = (a+b)x and b = (a+b)y for some $x, y \in R$. Then (a+b)ha = (a+b)h(a+b)x = (a+b)x = a. Similarly, (a+b)hb = b. Using $aR \cap bR = (0)$, we get

$$aha = a \quad bha = 0,$$
 (1)

$$bhb = b \quad ahb = 0. \tag{2}$$

(1) and (2) yield ah(a+b) = a and bh(a+b) = b. This proves

$$Ra + Rb = R(a + b).$$

To prove directness of the sum, let ua = vb for some $u, v \in R$. This gives uaha = vbha and so by (1), ua = 0 proving directness.

^{*} Corresponding author. Tel.: 740 593 1258/52; fax: 740 593 9805; e-mail: jain@ace.cs.ohiou.edu.

¹ This work was done while S.K. Jain was visiting ISI, Delhi under Fulbright Program.

² Supported by Council of Scientific and Industrial Research, New Delhi, India. Present address: Manipal Institute of Technology, Gangtok, Sikkim 737102, India.

142 S.K. Jain, K. Manjunatha Prasad/Journal of Pure and Applied Algebra 133 (1998) 141-142

(ii) \Rightarrow (i) is symmetrical.

We shall now prove that (iii) \Rightarrow (i). This will complete the proof of the theorem, because (i) or (ii) \Rightarrow (iii) is trivial. Since a + b is von Neumann regular in R, there exists some h in R such that (a+b)h(a+b) = a + b. From (iii), we have that $Ra \cap Rb = (0)$ and therefore,

(a+b)ha = a (a+b)hb = b.

So $a, b \in (a+b)R$ and aR + bR = (a+b)R. Again from (iii) we have that $aR \cap bR = (0)$ and hence $aR \oplus bR = (a+b)R$. \Box

Remark 1. The question may be asked whether the theorem can be extended to possibly rectangular matrices over a von Neumann regular ring S. The answer is in the affirmative. The statements (i)–(iii) in the theorem will then read

- (i)' $a\Gamma \oplus b\Gamma = (a+b)\Gamma$,
- (ii)' $\Gamma a \oplus \Gamma b = \Gamma(a+b),$
- (iii)' $a\Gamma \cap b\Gamma = (0)$ and $\Gamma a \cap \Gamma b = (0)$.

where a, b are $m \times n$ matrices over S such that there exists an $n \times m$ matrix x with (a+b)x(a+b) = (a+b) and Γ is the additive group of all $n \times m$ matrices over S.

Remark 2. The statements (i)-(iii) in the theorem are related to a partial ordering ' \leq ' in a von Neumann regular ring R: For $a, b \in R$, $a \leq b$ if ax = bx and xa = xb for some x satisfying axa = a. It can be shown that each of the statements in the theorem is equivalent to

(iv) $a \le a + b$.

Partial ordering ' \leq ' and applications of the above theorem to shorted operators in electrical networks as studied by Anderson [1] and Anderson-Trapp [2] will appear elsewhere.

References

- [1] W.N. Anderson Jr., Shorted operators, SIAM J. Appl. Math. 20 (1971) 522-525.
- [2] W.N. Anderson Jr., G.E. Trapp, Shorted operators II, SIAM J. Appl. Math. 28 (1975) 60-71.
- [3] R.E. Hartwig, How to order regular elements?, Math. Japon. 25 (1980) 1-13.