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Abstract 

A somewhat surprising and unexpected result in the theory of von Neumann regular rings is 
proved. @ 1998 Elsevier Science B.V. All rights reserved. 

AIMS Class@cation: 16E50 

Theorem 1. Let R he a ring and let a, h E R such that a + h is a uon Neumann regulur 

element. Then the follotGng are equivalent: 

(i) uR@bR=(u+b)R. 

(ii) Ra @ Rb = R(u + b). 

(iii) uR n bR = (0) and Ru n Rb = (0). 

Proof. (i) + (ii). By hypothesis (a + b)h(a + b) = (a + b), for some h E R. Since a, b E 

(a + b)R, we have that a = (a + b)x and b = (a + b)y for some x, y E R. Then (a + b)hu 

= (a + b)h(u + b)x = (a + b)x = a. Similarly, (a + b)hb = b. Using aR n bR = (0), we 

get 

aha=a bha=O, 

hhh=h ahh=O. 

(1) and (2) yield ah(u + b) = a and bh(u + b) = b. This proves 

Ra+Rb=R(a+b). 

(1) 

(2) 

To prove directness of the sum, let ua = ob for some u, ~7 E R. This gives uaha = vbha 

and so by (l), uu = 0 proving directness. 
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(ii) * (i) is symmetrical. 

We shall now prove that (iii) + (i). This will complete the proof of the theorem, be- 

cause (i) or (ii) + (iii) is trivial. Since a + b is von Neumann regular in R, there exists 

some h in R such that (a + b)h(a + b) = a + b. From (iii), we have that Ran Rb = (0) 

and therefore, 

(u+b)ha=u (a+b)hb=b. 

So a, b E (a + b)R and aR + bR = (a + b)R. Again from (iii) we have that aR n bR = (0) 

and hence aR ~3 bR = (a + b)R. 0 

Remark 1. The question may be asked whether the theorem can be extended to pos- 

sibly rectangular matrices over a von Neumann regular ring S. The answer is in the 

affirmative. The statements (i)-(iii) in the theorem will then read 

(i)’ UT $ bT = (a + b)T, 

(ii)’ TU @ Tb = T(u + b), 

(iii)’ urn bT = (0) and Ta n Tb = (0). 

where a, b are m x n matrices over S such that there exists an n x m matrix x with 

(a + b)x(a + b) = (a + b) and r is the additive group of all n x m matrices over 5’. 

Remark 2. The statements (i)-(iii) in the theorem are related to a partial ordering 

‘2’ in a von Neumann regular ring R: For a, b E R, a < b if ax = bx and xu = xb for 

some x satisfying UXU = a. It can be shown that each of the statements in the theorem 

is equivalent to 

(iv) a < u+b. 

Partial ordering ‘5’ and applications of the above theorem to shorted operators in 

electrical networks as studied by Anderson [l] and Anderson-Trapp [2] will appear 

elsewhere. 
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